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1. Introduction

This work concerns special kinds of problems called non-ideal problems, that is, when the
excitation is influenced by the response of the system. The ideal problems are the traditional ones.
Naturally non-ideal vibrating problems have one more degree of freedom than the ideal ones, due
to the action of the non-ideal source (generally DC motor with limited power supply) and the
interacting terms. Note that jump phenomenon and the increase in power required by a source
operating near resonance are manifestations of a non-ideal source called Sommerfeld effect. The
first book devoted to this subject was written by Kononenko [1]; Nayfeh and Mook [2] present a
comprehensive review of different theories until 1978, and recently Balthazar and collaborators
[3,4] presented a complete review of different theories concerning this subject.

Here we will analyze a non-ideal problem with two degrees of freedom, operating near a
resonance by using numerical simulations. The main purpose of this paper is to study the
possibilities of the existence of regular and irregular motions in a non-ideal vibrating problem
shown in the Fig. 1. This vibrating problem consists of a block of mass m1; a linear elastic spring
with coefficient of elasticity k1 and a linear damper with viscous damping coefficient c1: On the
body of mass m1; a non-ideal motor is placed, with a driving rotor of moment of inertia J and an
eccentric mass m0 situated at a distance r from the axis of rotation. By means of a linear spring

*Corresponding author. State University of Sao Paulo at Rio Claro, Dept. of Statistics, Applied Mathematics and

Computation, P.O. Box 178, CEP 13500-230, Rio Claro, SP, Brazil.

E-mail addresses: tsuchida@dcce.ibilce.unesp.br (M. Tsuchida), jmbaltha@rc.unesp.br (J.M. Balthazar), gsil-

va@dcce.ibilce.unesp.br (G.N. Silva), chesh@vmei.acad.bg (B.I. Cheshankov).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01128-8



with coefficient of elasticity k2 and a damper with coefficient of damping c2; a body of mass m2 has
been attached to mass m1:

The Lagrange equations of motion may be written as in Ref. [5]:

m1 .x1 ¼ �k1x1 � c1 ’x1 þ F ðx1; x2; ’x1; ’x2Þ þ m0ro2 cosjþ m0r ’o sin j; ð1aÞ

m2 .x2 ¼ �Fðx1;x2; ’x1; ’x2Þ; ð1bÞ

J ’o ¼ L � HðoÞ þ m0 .x1 sin j; ð1cÞ

’L ¼ �aL � boþ kU UðoÞ; ð1dÞ

where

F ðx1; x2; ’x1; ’x2Þ ¼ k2ðx2 � x1Þ þ c2ð ’x2 � ’x1Þ;

L is the torque generated by the DC motor of limited power supply and HðoÞ is the resisting
torque which will be ignored from now on. The parameters a and b are constants depending on
the type and power of the DC motor, and UðoÞ is the voltage of the motor. Note that Eqs. (1a)–
(1d) include only non-linear members resulting from the interaction between the vibrating system
and the DC motor (non-ideal system). Finally, we rewrite Eqs. (1a)–(1d) in an adimensional form
[5] defining the new variables
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to obtain

w001 ¼ �w1 � Z1w
0
1 þ mðw2 � w1Þ þ Z2ðw

0
2 � w01Þ þ %o2 cos %jþ %o0 sin %j;

w002 ¼ �y2ðw2 � w1Þ �
y2

m
Z2ðw

0
2 � w01Þ;

%o0 ¼ lþ rw001 sin %j; l0 ¼ �al� b %oþ u:

We remark that for minimizing the time of passage through resonance, a synthesis of control
based on Tikhonov’s regularization was applied in this problem [5].

Note also that the natural frequencies %o1 and %o2 of the non-ideal vibrating system defined by
Fig. 1 and Eqs. (1a)–(1d) are given by associated linear system. For this purpose we linearize the
governing equations of motion around %j ¼ 0 to obtain the linear system

y0 ¼ Ay;

where

y ¼ ðy1; y1; :::; y6Þ
T ¼ ðw1; w

0
1; w2; w

0
2; %o; lÞ

T
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and
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Fig. 1. Vibrational dynamical system consisting of two blocks coupled with springs and dampers. The DC motor with

limited power supply and eccentric mass play the part of non-ideal perturbating source.

Table 1

Possible resonances

Resonances

1:1 1:2 1:3 2:3

Parameters

Z1 0.1581 0.2828 0.2828 0.2828

Z2 0.5885 0.1414 0.0707 0.2432

m 0.5 0.2 0.1 0.3

y2 1.6667 0.3883 0.1348 1.0

a 3.1623 1.4142 1.4142 1.4142

b (�104) 1.0 0.2 0.2 0.2

Frequencies

%o1 0.8435 0.5465 0.3460 0.7721

%o2 0.8436 1.0950 1.0377 1.1588
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Fig. 2. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 0:7 (before passage through resonance).

Linear torque model.

Fig. 3. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 0:8435 (passage through resonance). Linear

torque model.
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Fig. 4. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 1:0 (after passage through resonance). Linear

torque model.

Fig. 5. Graph of maximum Lyapunov exponent against log t: (a) %o ¼ 0:7; (b) %o ¼ 0:8435; and (c) %o ¼ 1:0: Linear

torque model.
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Choosing adequately the physical parameters of the problem defined by Fig. 1, it is possible to
obtain some resonance conditions. In Table 1 we present some possibilities of them, but in this
work we analyze only the 1:1 resonance. Another resonance conditions will be reported soon.

We organized this paper as follows. First we discuss some numerical simulations of the
vibrating system defined by Fig. 1, using a linear model for the torque L; that is

L ¼ a � bo; ð2Þ

where a is a parameter related to voltage and b is a constant, both depending on the used DC
motor. Expression (2) is obtained from Eq. (1d) taking ’L ¼ 0: Second, we present the numerical
results by using the general expression for the torque, that is, considering ’La0 in Eq. (1d). In this
case, we analyze the possibility of existence of regular and irregular motion.

2. On numerical simulations by using linear torque

The goal of this section is to analyze the vibrating problem defined by Fig. 1, taking into
account the linear torque defined by Eq. (2). Note that the passage through the resonance is
obtained by varying the angular velocity ’%j of the DC motor. Figs. 2–4 show the profile of the
maximum amplitude of w1 and w2; respectively, before ð %o ¼ 0:7Þ; during ð %o ¼ 0:8435Þ and after

Fig. 6. Surface of section diagram for w1 with step size D %o ¼ 0:02: The adopted plane is %j ¼ 0 with conditions w01 > 0

and w02 > 0: Linear torque model.
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ð %o ¼ 0:1Þ the passage through resonance, where the vibration amplitude increases and decreases
accordingly but the motion remains regular. The evaluation of the maximum Lyapunov exponent
for the same values of %o confirms this affirmation (Fig. 5). The surface of section diagram
corresponding to %j ¼ 0 with w01 > 0 and w02 > 0 are shown in Figs. 6 and 7, respectively, for w1 and
w2: To conclude the discussion, in Fig. 8 we present the average of the maximum amplitude of w1

and w2 against the frequency %o: The analysis of the linear torque model under 1:1 resonance
reveals a regular vibration motion, and the maximum amplitude just increases during the passage
through the resonance.

Next we perform a similar analysis of the non-linear torque model.

3. On numerical simulations using non-linear torque

In this section we study the vibrating system defined by Fig. 1, taking into account the non-
linear torque as defined by Eq. (1d). Fig. 9 shows the profile of stationary amplitudes of w1 and w2

before the passage through resonance %o ¼ 0:7; where the vibration has a regular behaviour.
Nevertheless, for %o ¼ 0:8435 (passage through resonance) and %o ¼ 1:0 (after passage) the
vibration becomes irregular as is shown in Figs. 10 and 11, respectively. To reinforce this fact, we
present the frequency spectrum (Fig. 12) for w1; and maximum Lyapunov exponents (Fig. 13)

Fig. 7. Surface of section diagram for w2 with step size D %o ¼ 0:02: The adopted plane is %j ¼ 0 with conditions w01 > 0

and w02 > 0: Linear torque model.
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Fig. 8. Average maximum amplitude of w1 (o) and w2 (+) as function of frequency %o: The peaks correspond to the

passage through resonance %o ¼ 0:8435: Linear torque model.

Fig. 9. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 0:7 (before passage through resonance).

Non-linear torque model.
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Fig. 10. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 0:8435 (passage through resonance). Non-

linear torque model.

Fig. 11. Profile of maximum amplitude for w1 and w2 corresponding to %o ¼ 1:0 (after passage through resonance). Non-

linear torque model.
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Fig. 12. Frequency spectrum for w1: (a) %o ¼ 0:7; (b) %o ¼ 0:8435; and (c) %o ¼ 1:0: Non-linear torque model.

Fig. 13. Graph of maximum Lyapunov exponent against log t: (a) %o ¼ 0:7; (b) %o ¼ 0:8435; and (c) %o ¼ 1:0: Non-linear

torque model.
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Fig. 14. Surface of section diagram for w1 with step size D %o ¼ 0:02: The adopted plane is %j ¼ 0 with conditions w01 > 0

and w02 > 0: Non-linear torque model.

Fig. 15. Surface of section diagram for w2 with step size D %o ¼ 0:02: The adopted plane is %j ¼ 0 with conditions w01 > 0

and w02 > 0: Non-linear torque model.
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corresponding to before, during and after the passage through the resonance. Finally, the
bifurcation diagrams are showed in Figs. 14 and 15. The adopted surface of section is the same as
the linear torque model, that is, the plane %j ¼ 0 with both w01 and w02 positive.

4. Concluding remarks

We analyzed the vibrating problem defined by Fig. 1 by using linear and non-linear torque
models and considering the 1:1 resonance. In the case of linear torque we obtained regular
behaviour and both regular and irregular motion in the non-linear case. The other resonance
conditions showed in Table 1 will be studied in forthcoming papers.
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